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SUMMARY

The present article reports on an original implicit tensorial penalty method (ITPM) for modelling solid
particle motion in an incompressible �ow. The basic idea is to decompose the viscous stress tensor
of Navier–Stokes equation into contributions representing elongation, pure shearing and rotation. An
arti�cial viscosity is associated to each stress contribution. The penalty method is used to impose
di�erent stress components thanks to a generalized augmented Lagrangian method implemented by
introducing four Lagrange multipliers. An iterative Uzawa algorithm is �nally used to achieve the
numerical solution. The classical problems of Couette’s �ow between two coaxial cylinders and the
settling of a particle in a tank �lled with a viscous �uid have been chosen to demonstrate the capability
of the new method. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerous problems motivated by applications from environment and engineering sciences
involve multiphase �ows with coupled stress interactions. In this regard, modelling of solid
particle motion in a surrounding �uid has received a considerable research interest. The adop-
tion of unstructured grid techniques for numerical modelling of such complex �ow phenomena
is known to be costly in terms of computational time. Numerical modelling using a �xed grid
mesh is an interesting alternative. However, careful handling of di�erent stress components
should be employed for accurate distinction between the �uid and solid phases.
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Several popular numerical modelling approaches permit to impose speci�c stresses in the
motion equations, for example the immersed boundary (IB) method of Peskin [1], the
Brinkman penalty technique of Arquis and Caltagirone [2] or the �ctitious domain approach
of Glowinski et al. [3]. All the above-mentioned methods are based on introducing extra terms
in the Navier–Stokes equations in order to locally modify the motion equations according to
the local characteristics of the media.
In the present work, a general formulation for solving incompressible multiphase �ows

involving gas, liquid and solid particles is proposed. The basic idea of our work is to consider
all the media as �uid with speci�c rheological properties. In this way, a multiphase �ow
problem could be treated with a single set of equations.
The present article is organized as follows. The original decomposition of the stress tensor

for Newtonian �uids and its numerical implementation is �rst presented. The application of the
implicit tensorial penalty method (ITPM) to treat incompressibility stress and solid behaviour
is described in Section 2. The problems of Couette’s �ow between two coaxial cylinders and
the settling of a particle in a tank �lled with a viscous �uid have been chosen to demonstrate
the capability of the new method in the last section.

2. NEW FORMULATION OF THE STRESS TENSOR AND TENSORIAL
PENALTY METHOD

The classical governing equations of an incompressible �ow can be written as

∇ · u=0

�
(
@u
@t
+∇ · (u⊗ u)

)
=−∇p+ �g+∇ · ���+ St

(1)

where u is the velocity, � the density, t the time, p the pressure, g the gravity vector, ��� the
stress tensor, St an additional source term. The stress tensor ��� for a viscous Newtonian �uid
(see Reference [4]) is written

���=−p ��Id+ �∇ · u ��Id+ 2� ��D (2)

where � and � are, respectively, the compression and dynamic viscosities and
��D = 1

2 (∇u+∇tu) is the tensor of deforming rate and ��Id the identity matrix.

2.1. An original formulation of stress tensor

The aim is to reformulate the problem so as to include terms representing di�erent natural
contributions of the stress tensor dealing with compression, tearing, shearing and rotation.
This decomposition facilitates the distinct penalty of each term in order to strongly impose
the associated stress (see Reference [5]). In fact, these terms originally exist in the classical
formulation. However, they are explicitly exhibited in the governing equations thanks to the
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new introduced formulation. The intermediate formulation of ��� is

���=−p ��Id+ �∇ · u ��Id+ 2�(∇u − ���)

in which ��D is removed by a combination of the second order tensor ∇u and its asymmetrical
part ��� [4]. The �nal form is

���=(−p+ �∇ · u) ��Id+ � ��� + � ���− � ��� (3)

where ∇·u represents the compression term, ���, ��� and ���, respectively, represents the elongation
pseudo-tensor, pure shearing and the rotation pseudo-tensor. The designation of pseudo-tensor
is used since ���, ��� and ��� do not verify the classical tensorial properties of continuum me-
chanics. Arti�cial viscosity coe	cients (�; �; �) have been associated to each viscous stress.
It should be noted that the values of �, �, �, � correspond to − 2

3 �, 2�, 2�, � in the classical
formulation. The stress tensor formulation of (3) can be explicitly written in a tensorial form
in Cartesian co-ordinates as

���=




−p+ �∇ · u 0 0

0 −p+ �∇ · u 0

0 0 −p+ �∇ · u


+ �



@u
@x 0 0

0 @v
@y 0

0 0 @w
@z




+�



0 @u

@y
@u
@z

@v
@x 0 @v

@z

@w
@x

@w
@y 0


 − �




0 @u
@y − @v

@x
@u
@z − @w

@x

@v
@x − @u

@y 0 @v
@z − @w

@y

@w
@x − @u

@z
@w
@y − @v

@z 0


 (4)

2.2. Generalized UZAWA algorithm for ITPM

In the adoption of an Eulerian–Eulerian approach, it is necessary to distinguish between dif-
ferent media �i appearing in the domain. The ITPM can then be applied to penalize stress
components in the domain, according to the media. A distribution function Ci(M; t), also
called volume fraction, has been associated to each phase. Values of the volume fraction in
the domain are obtained solving an auxiliary advection equation, @Ci=@t + u · ∇Ci=0, using
a volume of �uid (V.O.F.) method [6]. Ci(M; t)=1 if M belongs to �i and Ci(M; t)=0
otherwise. The interface between di�erent �i is then de�ned as Ci(M; t)=0:5. Fluid proper-
ties (density, viscosity, etc.) have been evaluated as functions of the value of volume frac-
tion. The penalty method adopted for solving motion equations (1) and (3) is described as
follows.
We have implemented a generalized augmented Lagrangian approach �rst developed by

Fortin [7] who considered the pressure p (referred as lg1 in the present study) as a Lagrange
multiplier which accumulates the constraint of incompressibility. Following this work, tensorial
Lagrange multipliers l ��g2, l ��g3, l ��g4 have been introduced to accumulate the corresponding
constraints on �, � or �. The associated Lagrangian L(u, lg1, l ��g2, l ��g3, l ��g4) that should be
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minimized under several constraints is de�ned as

L(u; lg1; l ��g2; l ��g3; l ��g4)=
∫
�

(
�

(
@u
@t
+ u · ∇u

)
− �g

)
u d�

+
∫
�

∇ · ((lg1 − �(∇ · u − (∇ · u)∞)) ��Id) u d� +
∫
�

∇ · (l ��g2 − �( ���− ���∞)) u d�

+
∫
�

∇ · (l ��g3 − �( ���− ���∞))u d�−
∫
�

∇ · (l ��g4 − �( ���− ���∞)) u d� (5)

where (∇· u)∞; ���∞; ���∞; ���∞ are reference values to impose when �; �; � and � admit signi�cant
orders of magnitude leading to penalty. A correct penalty is ensured choosing the values of
the new viscosities such that the magnitude of (�∇ · u) ��Id, � ���, � ��� and � ��� is 102–103 times
the most important term (inertia, gravity, viscous force) in the Navier–Stokes equations.
The minimization of L(u; lg1; l ��g2; l ��g3; l ��g4) is realized using a generalized UZAWA algo-

rithm. The solution procedures are described as follows:

• Source term in the Navier–Stokes equations (1) can now be written as
St =∇ · ((lgn1 − �∇ · u)Id) +∇ · (l ��gn2 − � ���∞) +∇ · (l ��gn3 − � ���∞)− ∇ · (l ��gn4 − � ���∞)

• Knowing lg01 and l ��g
0
i for i∈ {2; 3; 4}, Lagrange multipliers lgn+1i are computed as

lgn+11 = lgn1 − �∇ · u; l ��g
n+1
i = l ��g

n
i − �i ��T i

with �2 =�, �3 = �, �4 = � and ��T 2 =
���, ��T 3 =

���, ��T 4 = ���.

2.3. Numerical solution

Implicit �nite volumes on a �xed Cartesian staggered grid are used to discretize the motion
equations. The time derivatives are approximated by an Euler scheme of �rst order whereas
the spatial �uxes are interpolated by centred schemes of second order. The resulting linear
system is solved by an iterative procedure of conjugate gradient for non-symmetric matrix
BiCGSTAB II [8], preconditioned with an incomplete Gauss factorization ILU [9].
The piecewise linear interface construction [6] method has been utilized to solve the

advection equation of the volume fraction Ci(M; t).

3. VALIDATIONS AND APPLICATIONS

3.1. Couette’s �ow

The simulation of the fundamental Couette’s �ow between two coaxial cylinders (Ri6Re) on
Cartesian grid has been chosen to verify the accuracy of ITPM. The rotation of the inner
completely solid cylinder of radius Ri, drives the viscous �uid contained in the annular zone
of the two cylinders. Since the inner solid is moving with a constant angular velocity �0, this
zone is characterized by a constant rotation pseudo-tensor and a non-deformable property. This
o�ers us the opportunity to impose the rotation pseudo-tensor ��� using ITPM. This behaviour
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Figure 1. Couette �ow between two coaxial cylinders: (a) Streamlines (128×128 Cartesian grid);
(b) velocity pro�le; and (c) space convergence study.

of solid motion has been modelled by assigning a value equal to 109 to the rotation viscosity
�. Incompressibility has been achieved using a variable augmented Lagrangian technique de-
veloped in Reference [10]. The �ow �eld is characterized by circular streamlines both in solid
and �uid areas (Figure 1(a)). The comparison with the analytical velocity pro�le is depicted
on Figure 1(b). A space convergence study has been carried out and demonstrates order 1
(Figure 1(c)).

3.2. Settling of solid particles in Stokes’ regime

We have also considered a spherical solid particle initially dropped without initial velocity in
a cylindrical tank �lled with a viscous �uid. Under the in�uence of gravity, the particle is
instantaneously accelerated and falls in the viscous �uid to reach its terminal settling velocity,
uts, when gravity forces balance drag force. Analytical Stokes’ solution, characterized by a
Reynolds number Rep = 2�fRputs=�f61, is available for an in�nite medium. However, Stokes’
velocity is modi�ed as

uts =
2
9
(�p − �f )
�Cw

gR2p (6)

as soon as wall e�ects are not negligible. Rp is the particle radius, � the �uid viscosity
and Cw a correction factor taking into account wall interactions. Cw depends on the ratio
between particle radius Rp and tank radius. Several studies have been carried to determine
Cw. Comparisons of our numerical values of Cw with literature data are presented in Figure 2
showing the agreement between the present numerical computations and the exact theory of
Haberman [11]. The order of space convergence is equal to 1:3.

3.3. Unsteady 3D simulations of a sphere settling in a tank

Further simulations have been carried out for the unsteady behaviour of a sphere settling in
a tank. Comparisons have been made with PIV measurements [12] of a settling sphere with
Rep ranging from 1:5 to 31:9. Experimental and numerical particle velocities are compared
in Figure 3(a). Concerning the Rep = 31:9 case, a slice of the �ow �eld is extracted when
the sphere’s centre is one diameter away from the tank’s bottom, and a comparison of the
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Figure 2. Settling of solid particle (Re� 1): (a) Comparison of present computed Cw with Haberman
data; and (b) space convergence study.

Figure 3. Settling of solid particle (Re¿1): (a) Particle velocity (E=experimental, S= simulation);
(b) �ow �eld |u|=uts, Rep = 31:9, Experimental (lines) and Numerical (grey levels); and (c) �uid

timeseries on a monitoring point (cf. black cross from (b)), Rep = 31:9.

velocity magnitude �eld |u|=uts is shown in Figure 3(b). Figure 3(c) represents the velocity
components ux=uts and uy=uts as functions of time on a monitor point. These results show that
particle transient motion as well as �uid behaviour are well predicted by the ITPM method.

4. CONCLUSION AND PROSPECTS

A new implicit tensorial penalty method (ITPM) has been presented for modelling solid par-
ticle motion in �ows with a single set of equations. Stress tensor ��� has been �rst decomposed
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into compression, elongation, shearing and rotation contribution, respectively, noted ∇·u; ���; ���
and ���. Four viscosities �; �; �; � have been associated to each contribution. The distinction
between �uid and solid regions is then realized with a distribution function. A generalized
augmented Lagrangian approach associated to an iterative Uzawa algorithm has been imple-
mented to solve governing equations. The classical Couette �ow between two coaxial cylinders
problem has been chosen to test the imposition of a constant rotation of a solid. The settling
of solid particle in con�ned con�gurations for a large range of Reynolds number has been
studied.
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